Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis
Stephen K. Dove (),
Frank T. Cooke,
Michael R. Douglas,
Lee G. Sayers,
Peter J. Parker and
Robert H. Michell
Additional contact information
Stephen K. Dove: Centre for Clinical Research in Immunology and Signalling
Frank T. Cooke: Imperial Cancer Research Fund Laboratories
Michael R. Douglas: Departments of Rheumatology, University of Birmingham
Lee G. Sayers: Imperial Cancer Research Fund Laboratories
Peter J. Parker: Imperial Cancer Research Fund Laboratories
Robert H. Michell: Centre for Clinical Research in Immunology and Signalling
Nature, 1997, vol. 390, issue 6656, 187-192
Abstract:
Abstract Inositol phospholipids play multiple roles in cell signalling systems. Two widespread eukaryotic phosphoinositide-based signal transduction mechanisms, phosphoinositidase C-catalysed phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) hydrolysis and 3-OH kinase-catalysed PtdIns(4,5)P2 phosphorylation, make the second messengers inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) sn-1,2-diacylglycerol and PtdIns(3,4,5)P3 (refs 1,2,3,4,5,6,7). In addition, PtdIns(4,5)P2 and PtdIns3P have been implicated in exocytosis and membrane trafficking8. We now show that when the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are hyperosmotically stressed, they rapidly synthesize phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2) by a process that involves activation of a PtdIns3P 5-OH kinase. This PtdIns(3,5)P2 accumulation only occurs in yeasts that have an active vps34-encoded PtdIns 3-OH kinase, showing that this latter kinase makes the PtdIns3P needed for PtdIns(3,5)P2 synthesis and indicating that PtdIns(3,5)P2 may have a role in sorting vesicular proteins. PtdIns(3,5)P2 is also present in mammalian and plant cells: in monkey Cos-7 cells, its labelling is inversely related to the external osmotic pressure. The stimulation of a PtdIns3P 5-OH kinase-catalysed synthesis of PtdIns(3,5)P2, a molecule that might be a new type of phosphoinositide ‘second messenger’, thus appears to be central to a widespread and previously uncharacterized regulatory pathway.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/36613 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:390:y:1997:i:6656:d:10.1038_36613
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/36613
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().