EconPapers    
Economics at your fingertips  
 

Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes

Howard J. Spero (), Jelle Bijma, David W. Lea and Bryan E. Bemis
Additional contact information
Howard J. Spero: University of California Davis
Jelle Bijma: Alfred Wegener Institute for Polar and Marine Research
David W. Lea: University of California Santa Barbara
Bryan E. Bemis: University of California Davis

Nature, 1997, vol. 390, issue 6659, 497-500

Abstract: Abstract Stable oxygen and carbon isotope measurements on biogenic calcite and aragonite have become standard tools for reconstructing past oceanographic and climatic change. In aquatic organisms, 18O/16O ratios in the shell carbonate are a function of the ratio in the sea water and the calcification temperature1. In contrast, 13C/12C ratios are controlled by the ratio of dissolved inorganic carbon in sea water and physiological processes such as respiration and symbiont photosynthesis2. These geochemical proxies have been used with analyses of foraminifera shells to reconstruct global ice volumes3, surface and deep ocean temperatures4,5, ocean circulation changes6 and glacial–interglacial exchange between the terrestrial and oceanic carbon pools7. Here, we report experimental measurements on living symbiotic and non-symbiotic plankton foraminifera (Orbulina universa and Globigerina bulloides respectively) showing that the 13C/12C and 18O/16O ratios of the calcite shells decrease with increasing seawater [CO32−]. Because glacial-period oceans had higher pH and [CO32−] than today8, these new relationships confound the standard interpretation of glacial foraminiferal stable-isotope data. In particular, the hypothesis that the glacial–interglacial shift in the 13C/12C ratio was due to a transfer of terrestrial carbon into the ocean7 can be explained alternatively by an increase in ocean alkalinity25. A carbonate-concentration effect could also help explain some of the extreme stable-isotope variations during the Proterozoic and Phanerozoic aeons9.

Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/37333 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:390:y:1997:i:6659:d:10.1038_37333

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/37333

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:390:y:1997:i:6659:d:10.1038_37333