A resonance in the Earth's obliquity and precession overthe past 20 Myr drivenbymantle convection
Alessandro M. Forte () and
Jerry X. Mitrovica
Additional contact information
Alessandro M. Forte: Institut de Physique du Globe de Paris
Jerry X. Mitrovica: University of Toronto
Nature, 1997, vol. 390, issue 6661, 676-680
Abstract:
Abstract The motion of the Solar System is chaotic to the extent that the precise positions of the planets are predictable for a period of only about 20 Myr (ref. 1). The Earth's precession, obliquity and insolation parameters over this time period1,2,3,4,5,6 can be influenced by secular variations in the dynamic ellipticity of the planet which are driven by long-term geophysical processes, such as post-glacial rebound5,7,8,9,10. Here we investigate the influence of mantle convection on these parameters. We use viscous flow theory to compute time series of the Earth's dynamic ellipticity for the past 20 Myr and then apply these perturbations to the nominal many-body orbital solution of Laskar et al.5. We find that the convection-induced change in the Earth's flattening perturbs the main frequency of the Earth's precession into the resonance associated with a secular term in the orbits of Jupiter and Saturn5, and thus significantly influences the Earth's obliquity. We also conclude that updated time series of high-latitude summer solar insolation diverge from the nominal solution for periods greater than the past ∼5 Myr. Our results have implications both for obtaining precise solutions for precession and obliquity and for procedures that adopt astronomical calibrations to date sedimentary cycles and climatic proxy records.
Date: 1997
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/37769 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:390:y:1997:i:6661:d:10.1038_37769
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/37769
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().