Discovery of a supernova explosion at half the age of the Universe
S. Perlmutter (),
G. Aldering,
M. Della Valle,
S. Deustua,
R. S. Ellis,
S. Fabbro,
A. Fruchter,
G. Goldhaber,
D. E. Groom,
I. M. Hook,
A. G. Kim,
M. Y. Kim,
R. A. Knop,
C. Lidman,
R. G. McMahon,
P. Nugent,
R. Pain,
N. Panagia,
C. R. Pennypacker,
P. Ruiz-Lapuente,
B. Schaefer and
N. Walton
Additional contact information
S. Perlmutter: E. O. Lawrence Berkeley National Laboratory
G. Aldering: E. O. Lawrence Berkeley National Laboratory
M. Della Valle: Universita’ di Padova
S. Deustua: E. O. Lawrence Berkeley National Laboratory
R. S. Ellis: Institute of Astronomy
S. Fabbro: E. O. Lawrence Berkeley National Laboratory
A. Fruchter: Space Telescope Science Institute
G. Goldhaber: E. O. Lawrence Berkeley National Laboratory
D. E. Groom: E. O. Lawrence Berkeley National Laboratory
I. M. Hook: E. O. Lawrence Berkeley National Laboratory
A. G. Kim: E. O. Lawrence Berkeley National Laboratory
M. Y. Kim: E. O. Lawrence Berkeley National Laboratory
R. A. Knop: E. O. Lawrence Berkeley National Laboratory
C. Lidman: European Southern Observatory, Alonso de Cordova
R. G. McMahon: Institute of Astronomy
P. Nugent: E. O. Lawrence Berkeley National Laboratory
R. Pain: E. O. Lawrence Berkeley National Laboratory
N. Panagia: Space Telescope Science Institute
C. R. Pennypacker: E. O. Lawrence Berkeley National Laboratory
P. Ruiz-Lapuente: Faculty of Physics, University of Barcelona
B. Schaefer: Yale University
N. Walton: Isaac Newton Group, Apartado 321
Nature, 1998, vol. 391, issue 6662, 51-54
Abstract:
Abstract The ultimate fate of the Universe, infinite expansion or a big crunch, can be determined by using the redshifts and distances of very distant supernovae to monitor changes in the expansion rate. We can now find1 large numbers of these distant supernovae, and measure their redshifts and apparent brightnesses; moreover, recent studies of nearby type Ia supernovae have shown how to determine their intrinsic luminosities2,3,4—and therefore with their apparent brightnesses obtain their distances. The >50 distant supernovae discovered so far provide a record of changes in the expansion rate over the past several billion years5,6,7. However, it is necessary to extend this expansion history still farther away (hence further back in time) in order to begin to distinguish the causes of the expansion-rate changes—such as the slowing caused by the gravitational attraction of the Universe's mass density, and the possibly counteracting effect of the cosmological constant8. Here we report the most distant spectroscopically confirmed supernova. Spectra and photometry from the largest telescopes on the ground and in space show that this ancient supernova is strikingly similar to nearby, recent type Ia supernovae. When combined with previous measurements of nearer supernovae2,5, these new measurements suggest that we may live in a low-mass-density universe.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/34124 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:391:y:1998:i:6662:d:10.1038_34124
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/34124
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().