EconPapers    
Economics at your fingertips  
 

Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis

Hideki Sakahira, Masato Enari and Shigekazu Nagata ()
Additional contact information
Hideki Sakahira: Osaka University Medical School
Masato Enari: Osaka University Medical School
Shigekazu Nagata: Osaka University Medical School

Nature, 1998, vol. 391, issue 6662, 96-99

Abstract: Abstract Various molecules such as cytokines and anticancer drugs, as well as factor deprivation, rapidly induce apoptosis (programmed cell death)1,2, which is morphologically characterized by cell shrinkage and the blebbing of plasma membranes and by nuclear condensation3,4. Caspases, particularly caspase 3, are proteases that are activated during apoptosis and which cleave substrates such as poly(ADP-ribose) polymerase, actin, fodrin, and lamin5,6. Apoptosis is also accompanied by the internucleosomal degradation of chromosomal DNA7,8,9. In the accompanying Article10, wehave identified and molecularly cloned a caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD). Here we show that caspase 3 cleaves ICAD and inactivates its CAD-inhibitory effect. We identified two caspase-3 cleavage sites in ICAD by site-directed mutagenesis. When human Jurkat cells were transformed with ICAD-expressing plasmid, occupation of the receptor Fas, which normally triggers apoptosis, did not result in DNA degradation. The ICAD transformants were also resistant to staurosporine-induced DNA degradation, although staurosporine still killed the cells by activating caspase. Our results indicate that activation of CAD downstream of the caspase cascade is responsible for internucleosomal DNA degradation during apoptosis, and that ICAD works as an inhibitor of this process.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/34214 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:391:y:1998:i:6662:d:10.1038_34214

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/34214

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:391:y:1998:i:6662:d:10.1038_34214