Silicate regulation of new production in the equatorial Pacific upwelling
Richard C. Dugdale () and
Frances P. Wilkerson
Additional contact information
Richard C. Dugdale: Romberg Tiburon Centers, San Francisco State University
Frances P. Wilkerson: Romberg Tiburon Centers, San Francisco State University
Nature, 1998, vol. 391, issue 6664, 270-273
Abstract:
Abstract Surface waters of the eastern equatorial Pacific Ocean present the enigma of apparently high plant-nutrient concentrations but low phytoplankton biomass and productivity1. One explanation for this ‘high-nitrate, low-chlorophyll’ (HNLC) phenomenon has been that growth is limited by iron availability2,3. Here we use field data and a simple silicon-cycle model4 to investigate the HNLC condition for the upwelling zone of this ocean region. Measured silicate concentrations in surface waters are low and largely invariant with time, and set the upper limit on the total possible biological utilization of dissolved inorganic carbon. Chemical and biological data from surface waters indicate that diatoms—silica-shelled phytoplankton—carry out all the ‘new production’ (nitrate uptake)5. Smaller phytoplankton (picoplankton) accomplish most of the total primary production, largely fuelled by nitrogen regenerated in reduced forms as a result of grazing by zooplankton. The model predicts values of new and export production (the production exported to below the euphotic zone) that compare well with measured values6. New and export production are in balance for biogenic silica, whereas new production exceeds export for nitrogen. The HNLC condition in the upwelling zone can therefore be understood to be due to a chemostat-like regulation of nitrate uptake by upwelled silicate supply to diatoms: ‘low-silicate HNLC’. These results are not inconsistent with observations of iron-fertilized diatom growth during in situ experiments in ‘low-iron HNLC’ waters outside this upwelling zone2,3, but reflect the role of different supply rates of iron and silicate in determining the nature of the HNLC condition.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/34630 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:391:y:1998:i:6664:d:10.1038_34630
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/34630
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().