Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb
Jin Jiang () and
Gary Struhl
Additional contact information
Jin Jiang: Columbia University College of Physicians and Surgeons
Gary Struhl: Columbia University College of Physicians and Surgeons
Nature, 1998, vol. 391, issue 6666, 493-496
Abstract:
Abstract Members of the Hedgehog (Hh) and Wnt/Wingless (Wg) families of secreted proteins control many aspects of growth and patterning during animal development1,2. Hh signal transduction leads to increased stability of a transcription factor, Cubitus interruptus (Ci)3,4, whereas Wg signal transduction causes increased stability of Armadillo (Arm/β-catenin)5, a possible co-factor for thetranscriptional regulator Lef1/TCF6. Here we describe a new gene, slimb (for supernumerary limbs), which negatively regulates both of these signal transduction pathways. Loss of function of slimb results in a cell-autonomous accumulation of high levels of both Ci and Arm, and the ectopic expression of both Hh− and Wg− responsive genes. The slimb gene encodes a conserved F-box/WD40-repeat protein related to Cdc4p, a protein in budding yeast that targets cell-cycle regulators for degradation by the ubiquitin/proteasome pathway7,8,9. We propose that Slimb protein normally targets Ci and Arm for processing or degradation by the ubiquitin/proteasomepathway, and that Hh and Wg regulate gene expression at least in part by inducing changes in Ci and Arm, which protect them from Slimb-mediated proteolysis.
Date: 1998
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/35154 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:391:y:1998:i:6666:d:10.1038_35154
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35154
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().