DNA-templated assembly and electrode attachment of a conducting silver wire
Erez Braun (),
Yoav Eichen,
Uri Sivan and
Gdalyahu Ben-Yoseph
Additional contact information
Erez Braun: Department of Physics
Yoav Eichen: Department of Chemistry
Uri Sivan: Department of Physics
Gdalyahu Ben-Yoseph: Department of Physics
Nature, 1998, vol. 391, issue 6669, 775-778
Abstract:
Abstract Recent research in the field of nanometre-scale electronics has focused on two fundamental issues: the operating principles of small-scale devices, and schemes that lead to their realization and eventual integration into useful circuits. Experimental studies on molecular1 to submicrometre2 quantum dots and on the electrical transport in carbon nanotubes3,4,5 have confirmed theoretical predictions6,7,8 of an increasing role for charging effects as the device size diminishes. Nevertheless, the construction of nanometre-scale circuits from such devices remains problematic, largely owing to the difficulties of achieving inter-element wiring and electrical interfacing to macroscopic electrodes. The use of molecular recognition processes and the self-assembly of molecules into supramolecular structures9,10 might help overcome these difficulties. In this context, DNA has the appropriate molecular-recognition11 and mechanical12,13,14,15,16 properties, but poor electrical characteristics prevent its direct use in electrical circuits. Here we describe a two-step procedure that may allow the application of DNA to the construction of functional circuits. In our scheme, hybridization of the DNA molecule with surface-bound oligonucleotides is first used to stretch it between two gold electrodes; the DNA molecule is then used as a template for the vectorial growth of a 12 µm long, 100 nm wide conductive silver wire. The experiment confirms that the recognition capabilities of DNA can be exploited for the targeted attachment of functional wires.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/35826 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:391:y:1998:i:6669:d:10.1038_35826
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35826
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().