EconPapers    
Economics at your fingertips  
 

Discovery of a useful thin-film dielectric using a composition-spread approach

R. B. van Dover, L. F. Schneemeyer and R. M. Fleming
Additional contact information
R. B. van Dover: Bell Laboratories, Lucent Technologies
L. F. Schneemeyer: Bell Laboratories, Lucent Technologies
R. M. Fleming: Bell Laboratories, Lucent Technologies

Nature, 1998, vol. 392, issue 6672, 162-164

Abstract: Abstract The continuing drive towards miniaturization of electronic devices1 is motivating the search for new materials. Consider, for example, the case of the much-used dynamic random-access memory. The minimum capacitance per cell that can be tolerated is expected2 to remain at 30–40 fF, but as the cell area decreases, the corresponding reduction in geometric capacitance has to be compensated for. So far, this has been achieved by resorting to complex non-planar structures and/or using much thinner films of the dielectric insulator, amorphous silicon dioxide (a-SiOx), although the latter approach is limited by the electric fields that can be supported by a-SiOx before its insulating properties break down. An alternative strategy is to develop thin-film insulators that have a dielectric constant significantly greater than that of a-SiOx, reducing the size of the fields required for device operation. Here we show that a composition-spread technique allows for the efficient evaluating of materials with both a high dielectric constant and a high breakdown field. We apply this approach to the Zr–Sn–Ti–O system, and we find that compositions close to Zr0.15Sn0.3Ti0.55O2−δ are better thin-film dielectrics than high-quality deposited a-SiOx. Although detailed tests of the performance of these materials have not yet been carried out, our initial results suggest that they are likely to be comparable to the best alternatives (such as (Ba, Sr)TiO3) currently being considered for integrated-circuit capacitors.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/32381 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:392:y:1998:i:6672:d:10.1038_32381

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/32381

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:392:y:1998:i:6672:d:10.1038_32381