Evidence against turbulent and canopy-like magnetic fields in the solar chromosphere
Egidio Landi Degl'Innocenti ()
Additional contact information
Egidio Landi Degl'Innocenti: Universitá di Firenze
Nature, 1998, vol. 392, issue 6673, 256-258
Abstract:
Abstract Measurements of the degree of polarization of light in the spectral lines emitted by gas near the Sun's limb (its outer edge) can be used to investigate the electron densities and magnetic field strengths in the solar atmosphere; these quantities are important for determining the balance and transport of energy through the Sun's atmosphere. Recent measurements1,2 revealed a surprising degree of polarization in the sodium doublet; these observations have remained an enigma. Here I report a mechanism that may explain these observations, in which it is assumed that the populations of the magnetic sublevels of the electronic ground state of the sodium atom are not equal: this leads to ground-level atomic polarization. This mechanism explains very well the observed line shapes, and implies that depolarization does not occur in the solar chromosphere, which would seem to rule out the existence of turbulent magnetic fields and of horizontal, canopy-like fields stronger than∼0.01 G. This is difficult to understand, because there is substantial evidence from othertypes of observation for both types of field3,4,5,6,7,8,9,10. There are obviously aspects of the Sun's atmosphere that remain very poorly understood.
Date: 1998
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/32603 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:392:y:1998:i:6673:d:10.1038_32603
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/32603
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().