Polymeric emulsifiers based on reversible formation of hydrophobic units
Arvind M. Mathur,
Bernhard Drescher,
Alec B. Scranton () and
John Klier
Additional contact information
Arvind M. Mathur: Michigan State University
Bernhard Drescher: Michigan State University
Alec B. Scranton: Michigan State University
John Klier: Central Research and Development, Dow Chemical Company
Nature, 1998, vol. 392, issue 6674, 367-370
Abstract:
Abstract Emulsions consist of mixtures of immiscible liquids where one liquid is finely dispersed within the continuous phase of another. They are generally not thermodynamically stable: the dispersion tends to separate over time. Aqueous emulsions, widely used in food, pharmaceutical, and many other industries, are often stabilized by block copolymers containing alternating hydrophilic and hydrophobic segments (typically based on ethylene oxide/propylene oxide diblock and triblock systems) that penetrate into the oil and aqueous phase, respectively1,2. Here we describe a conceptually new type of emulsifier whose hydrophobic blocks are formed spontaneously and reversibly by the complexation of hydrophilic segments, thereby allowing the stabilizing properties of the system to be switched on and off. We illustrate this approach using a comb-type graft copolymer containing a poly(methacrylic acid) backbone and short grafts of poly(ethylene glycol). The uncomplexed polymer is hydrophilic, but acidic conditions induce the formation of hydrogen-bonded hydrophobic complexes between parts of the backbone and the grafts. As a result, the grafted copolymer forms alternating blocks of hydrophilic (uncomplexed) and hydrophobic (complexed) segments that stabilize acidic emulsions. An increase in pH suppresses complex formation and thus leads to the breakup of the emulsion. Emulsion tests show that although the performance of the grafted copolymers is not yet competitive with existing emulsifiers, this approach provides an efficient strategy for the design of fully reversible emulsifiers.
Date: 1998
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/32856 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:392:y:1998:i:6674:d:10.1038_32856
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/32856
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().