EconPapers    
Economics at your fingertips  
 

Accretion rate of cosmic spherules measured at the South Pole

Susan Taylor, James H. Lever () and Ralph P. Harvey
Additional contact information
Susan Taylor: US Army Cold Regions Research and Engineering Laboratory
James H. Lever: US Army Cold Regions Research and Engineering Laboratory
Ralph P. Harvey: Case Western Reserve University

Nature, 1998, vol. 392, issue 6679, 899-903

Abstract: Abstract Micrometeorites are terrestrially collected, extraterrestrial particles smaller than about 1 mm, which account for most of the mass being accreted to the Earth1,2. Compared with meteorites, micrometeorites more completely represent the Earth-crossing meteoroid complex3,4 and should include fragments of asteroids, comets, Mars and our Moon, as well as pre-solar and interstellar grains3,6. Previous measurements of the flux of micrometeoroids that survive to the Earth's surface have large uncertainties owing to the destruction of particles by weathering7,8,9, inefficiencies in magnetic collection or separation techniques7,8,9, low particle counts10,11, poor age constraint7,8,9,12,13 or highly variable concentrating processes12,13. Here we describe an attempt to circumvent these problems through the collection of thousands of well preserved and dated micrometeorites from the bottom of the South Pole water well, which supplies drinking water for the Scott–Amundsen station. Using this collection, we have determined precise estimates of the flux and mass distribution for 50–700-µm cosmic spherules (melted micrometeorites). Allowing for the expected abundance of unmelted micrometeorites14 in the samples, our results indicate that about 90% of the incoming mass of submillimetre particles evaporates during atmospheric entry. Our data indicate the loss of glass-rich and small stony spherules from deep-sea deposits7,8, and they provide constraints for models describing the survival probability of micrometeoroids15,16.

Date: 1998
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/31894 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:392:y:1998:i:6679:d:10.1038_31894

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/31894

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:392:y:1998:i:6679:d:10.1038_31894