Dynamic responses of terrestrial ecosystem carbon cycling to global climate change
Mingkui Cao () and
F. Ian Woodward
Additional contact information
Mingkui Cao: University of Sheffield
F. Ian Woodward: University of Sheffield
Nature, 1998, vol. 393, issue 6682, 249-252
Abstract:
Abstract Terrestrial ecosystems and the climate system are closely coupled, particularly by cycling of carbon between vegetation, soils and the atmosphere. It has been suggested1,2 that changes in climate and in atmospheric carbon dioxide concentrations have modified the carbon cycle so as to render terrestrial ecosystems as substantial carbon sinks3,4; but direct evidence for this is very limited5,6. Changes in ecosystem carbon stocks caused by shifts between stable climate states have been evaluated7,8, but the dynamic responses of ecosystem carbon fluxes to transient climate changes are still poorly understood. Here we use a terrestrial biogeochemical model9, forced by simulations of transient climate change with a general circulation model10, to quantify the dynamic variations in ecosystem carbon fluxes induced by transient changes in atmospheric CO2 and climate from 1861 to 2070. Wepredict that these changes increase global net ecosystem production significantly, but that this response will decline as the CO2 fertilization effect becomes saturated and is diminished by changes in climatic factors. Thus terrestrial ecosystem carbon fluxes both respond to and strongly influence the atmospheric CO2 increase and climate change.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
https://www.nature.com/articles/30460 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:393:y:1998:i:6682:d:10.1038_30460
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/30460
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().