Mineralogy and dynamics of a pyrolite lower mantle
S. E. Kesson (),
J. D. Fitz Gerald and
J. M. Shelley
Additional contact information
S. E. Kesson: Research School of Earth Sciences, Australian National University
J. D. Fitz Gerald: Research School of Earth Sciences, Australian National University
J. M. Shelley: Research School of Earth Sciences, Australian National University
Nature, 1998, vol. 393, issue 6682, 252-255
Abstract:
Abstract There is a growing consensus that the Earth's lower mantle possesses a bulk composition broadly similar to that of the upper mantle (known as pyrolite)1,2,3. But little is known about lower-mantle mineralogy and phase chemistry4,5, especially at depth. Here we report diamond-anvil cell experiments at pressures of 70 and 135 GPa (equivalent to depths within the Earth of about 1,500 and 2,900 km, respectively) which show that pyrolite would consist solely of magnesian-silicate perovskite (MgPv), calcium-silicate perovskite (CaPv) and magnesiowüstite (Mw). Contrary to recent speculation6,7, no additional phases or disproportionations were encountered and MgPv was found to be present at both pressures. Moreover, we estimate that, at ultra-high pressures where thermal expansivities are low, buoyancy forces inherent in subducted slabs because of their lithology will be of similar magnitude to those required for thermally driven upwelling. So slabs would need to be about 850 °C cooler than their surroundings if they are to sink to the base of the mantle. Furthermore, initiation of plume-like upwellings from the core–mantle boundary, long attributed to superheating, may be triggered by lithologically induced buoyancy well before thermal equilibration is attained. We estimate that ascent would commence within ∼0.5 Gyr of the slab reaching the core–mantle boundary, in which case the lowermost mantle should not be interpreted as a long-term repository for ancient slabs.
Date: 1998
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/30466 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:393:y:1998:i:6682:d:10.1038_30466
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/30466
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().