Millennial-scale changes in North Atlantic circulation since the last glaciation
Thomas M. Marchitto (),
William B. Curry and
Delia W. Oppo
Additional contact information
Thomas M. Marchitto: Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography
William B. Curry: Woods Hole Oceanographic Institution
Delia W. Oppo: Woods Hole Oceanographic Institution
Nature, 1998, vol. 393, issue 6685, 557-561
Abstract:
Abstract Ocean circulation is closely linked to climate change on glacial–interglacial and shorter timescales. Extensive reorganizations in the circulation of deep and intermediate-depth waters in the Atlantic Ocean have been hypothesized for both the last glaciation1,2,3,4,5,6 and the subsequent Younger Dryas cold interval3,6,7,8,9,10, but there has been little palaeoceanographic study of the subtropical gyres11,12,13. These gyres are the dominant oceanic features of wind-driven circulation, and as such they reflect changes in climate and are a significant control on nutrient cycling and, possibly, atmospheric CO2 concentrations. Here we present Cd/Ca ratios in the shells of benthic foraminifera from the Bahama banks that confirm previous suggestions11,12 that nutrient concentrations in the North Atlantic subtropical gyre were much lower during the Last Glacial Maximum than they are today (up to 50% lower according to our data). These contrasting nutrient burdens imply much shorter residence times for waters within the thermocline of the Last Glacial Maximum. Below the glacial thermocline, nutrient concentrations were reduced owing to the presence of Glacial North Atlantic Intermediate Water. A high-resolution Cd/Ca record from an intermediate depth indicates decreased nutrient concentrations during the Younger Dryas interval as well, mirroring opposite changes at a nearby deep site3,9. Together, these observations suggest that the formation of deep and intermediate waters — North Atlantic Deep Water and Glacial North Atlantic Intermediate Water, respectively — wax and wane alternately on both orbital and millennial timescales.
Date: 1998
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/31197 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:393:y:1998:i:6685:d:10.1038_31197
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/31197
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().