EconPapers    
Economics at your fingertips  
 

C36, a new carbon solid

C. Piskoti, J. Yarger and A. Zettl ()
Additional contact information
C. Piskoti: University of California at Berkeley
J. Yarger: Lawrence Berkeley National Laboratory
A. Zettl: University of California at Berkeley

Nature, 1998, vol. 393, issue 6687, 771-774

Abstract: Abstract Under appropriate non-equilibrium growth conditions, carbon atoms form relatively stable hollow clusters of well-defined mass number1, collectively known as fullerenes. The mass production, purification and condensation of such clusters into a molecular solid is generally essential to full experimental characterization: the initial discovery2 of C60, for example, had to await a bulk synthesis method3 six years later before detailed characterization of the molecule was possible. Gas-phase experiments1,4,5 have indicated the existence of a wide range of fullerene clusters, but beyond C60 only a few pure fullerene solids have been obtained6, most notably C70. Low-mass fullerenes are of particular interest because their high curvature and increased strain energy owing to adjacent pentagonal rings could lead to solids with unusual intermolecular bonding and electronic properties. Here we report the synthesis of the solid form of C36 by the arc-discharge method3. We have developed purification methods that separate C36 from amorphous carbon and other fullerenes, to yield saturated solutions, thin films and polycrystalline powders of the pure solid form. Solid-state NMR measurements suggest that the molecule has D6h symmetry, and electron-diffraction patterns are consistent with a tightly bound molecular solid with an intermolecular spacing of 6.68 Å. We observe large increases in the electrical conductivity of the solid on doping with alkali metals.

Date: 1998
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/31668 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:393:y:1998:i:6687:d:10.1038_31668

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/31668

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:393:y:1998:i:6687:d:10.1038_31668