The evolution of warning signals
Shigeo Yachi and
Masahiko Higashi ()
Additional contact information
Shigeo Yachi: Laboratoire d'Ecologie, UMR 7625, Ecole Normale Supérieure
Masahiko Higashi: Center for Ecological Research, Kyoto University
Nature, 1998, vol. 394, issue 6696, 882-884
Abstract:
Abstract Warning coloration signals are a familiar and conspicuous phenomenon in nature. However, the fundamental question of how warning signals initially evolved remains unanswered. For an unpalatable prey to evolve a signal to indicate its unprofitability, a rare and conspicuous mutant in a population of unpalatable cryptic prey must overcome a double disadvantage: a greater risk of being detected (as a result of being more conspicuous) and of being attacked (because its rarity results in a decreased association with aversion) by a predator1,2. Although the prior evolution of prey gregariousness may help warning signals to evolve3,4,5,6,7,8, such an evolutionary order may not always be the case4,9,10,11. Here we present a theoretical model that describes a mechanism for the evolution of warning signals without having to invoke gregariousness. Specifically, a predator's generalization of stimulus in associative learning, with a ‘peak shift’ towards greater conspicuousness5,12,13,14,15, allows a warning signal to evolve when the prey population density exceeds a threshold. Once a warning signal starts to evolve, it continues to grow; the resulting, evolutionarily stable16 conspicuousness of prey is discontinuously greater than that of the original cryptic prey, drawing an unambiguous distinction in their appearance.
Date: 1998
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/29751 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:394:y:1998:i:6696:d:10.1038_29751
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/29751
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().