EconPapers    
Economics at your fingertips  
 

Dynamic topography, plate driving forces and the African superswell

Carolina Lithgow-Bertelloni () and Paul G. Silver
Additional contact information
Carolina Lithgow-Bertelloni: Carnegie Institute of Washington
Paul G. Silver: Carnegie Institute of Washington

Nature, 1998, vol. 395, issue 6699, 269-272

Abstract: Abstract Discovering the connection between processes observed to occur at the surface of the Earth and its internal dynamics remains an essential goal in the Earth sciences. Deep mantle structure, as inferred from seismic tomography or subduction history, has been shown to account well for the observed surface gravity fieldand motions of tectonic plates1,2,3. But the origin of certain large-scale features, such as the anomalous elevation of the southern and eastern African plateaux, has remained controversial. Whereas the average elevation of most cratons is between 400 and 500 m, the southern African plateau stands more than 1 km above sea level, with the surrounding oceans possessing a residual bathymetry in excess of 500 m (ref. 4). Global seismic tomography studies have persistently indicated the existence of a large-scale low-velocity anomaly beneath the African plate5,6,7,8,9,10 and here we show that mantle flow induced by the density variations inferred from these velocity anomalies can dynamically support the excess elevation of the African ‘superswell’. We also find that this upwelling mantle flow—which is most intense near the core–mantle boundary—constitutes a significant driving force for tectonic plates in the region.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/26212 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:395:y:1998:i:6699:d:10.1038_26212

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/26212

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:395:y:1998:i:6699:d:10.1038_26212