Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors
Pinaki Majumdar and
Peter B. Littlewood ()
Additional contact information
Pinaki Majumdar: Bell Laboratories, Lucent Technologies
Peter B. Littlewood: Bell Laboratories, Lucent Technologies
Nature, 1998, vol. 395, issue 6701, 479-481
Abstract:
Abstract Magnetoresistance—the field-dependent change in the electrical resistance of a ferromagnetic material—finds applications in technologies such as magnetic recording. Near and above the Curie point, T c, corresponding to the onset of magnetic order, scattering of charge carriers by magnetic fluctuations can substantially increase the electrical resistance1,2. These fluctuations can be suppressed3 by a magnetic field, leading to a negative magnetoresistance. Magnetic scattering might also have a role in the ‘colossal’ magnetoresistance observed in some perovskite manganese oxides4,5,6, but is it not yet clear how to reconcile this behaviour with that of the conventional ferromagnetic materials. Here we show that, in generic models of magnetic scattering, the bulk low-field magnetoresistance (near and above T c) is determined by a single parameter: the charge-carrier density. In agreement with experiment3,7,8, the low-field magnetoresistance scales with the square of the ratio of the field-induced magnetization to the saturation magnetization. The scaling factor is C ≈ x −2/3, where x is the number of charge carriers per magnetic unit cell. Data from very different ferromagnetic metals and doped semiconductors are in broad quantitative agreement with this relationship, with the notable exception of the perovskite manganese oxides (in which dynamic lattice distortions complicate and enhance4,9,10,11,12 the effects of pure magnetic scattering). Our results might facilitate searches for new materials with large bulk magnetoresistive properties.
Date: 1998
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/26703 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:395:y:1998:i:6701:d:10.1038_26703
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/26703
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().