Predicted signatures of rotating Bose–Einstein condensates
D. A. Butts and
D. S. Rokhsar ()
Additional contact information
D. A. Butts: University of California
D. S. Rokhsar: University of California
Nature, 1999, vol. 397, issue 6717, 327-329
Abstract:
Abstract Superfluids are distinguished from normal fluids by their peculiar response1 to rotation: circulating flow in superfluid helium2,3, a strongly coupled Bose liquid, can appear only as quantized vortices4,5,6. The newly created Bose–Einstein condensates7,9—clouds of millions of ultracold, weakly interacting alkali-metal atoms that occupy a single quantum state—offer the possibility of investigating superfluidity in the weak-coupling regime. An outstanding question is whether Bose–Einstein condensates exhibit a mesoscopic quantum analogue of the macroscopic vortices in superfluids, and what its experimental signature would be. Here we report calculations of the low-energy states of a rotating, weakly interacting Bose gas. We find a succession of transitions between stable vortex patterns of differing symmetries that are in general qualitative agreement with observations5 of rotating superfluid helium, a strong-coupling superfluid. Counterintuitively, the angular momentum per particle is not quantized. Some angular momenta are forbidden, corresponding to asymmetrical unstable states that provide a physical mechanism for the entry of vorticity into the condensate.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/16865 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:397:y:1999:i:6717:d:10.1038_16865
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/16865
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().