In vivo regulation of axon extension and pathfinding by growth-cone calcium transients
Timothy M. Gomez and
Nicholas C. Spitzer
Additional contact information
Timothy M. Gomez: University of California at San Diego
Nicholas C. Spitzer: University of California at San Diego
Nature, 1999, vol. 397, issue 6717, 350-355
Abstract:
Abstract Growth cones at the tips of extending neurites migrate through complex environments in the developing nervous system and guide axons to appropriate target regions using local cues1,2. The intracellular calcium concentration ([Ca2+]i) of growth cones correlates with motility in vitro3,4,5,6,7, but the physiological links between environmental cues and axon growth in vivo are unknown. Here we report that growth cones generate transient elevations of [Ca2+]i as they migrate within the embryonic spinal cord and that the rate of axon outgrowth is inversely proportional to the frequency of transients. Suppressing Ca2+ transients by photorelease of a Ca2+ chelator accelerates axon extension, whereas mimicking transients with photorelease of Ca2+ slows otherwise rapid axonal growth. The frequency of Ca2+ transients is cell-type specific and depends on the position of growth cones along their pathway. Furthermore, growth-cone stalling and axon retraction, which are two important aspects of pathfinding8,9,10, are associated with high frequencies of Ca2+ transients. Our results indicate that environmentally regulated growth-cone Ca2+ transients control axon growth in the developing spinal cord.
Date: 1999
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/16927 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:397:y:1999:i:6717:d:10.1038_16927
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/16927
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().