Photosynthetic control of chloroplast gene expression
Thomas Pfannschmidt,
Anders Nilsson and
John F. Allen ()
Additional contact information
Thomas Pfannschmidt: Plant Cell Biology, Lund University
Anders Nilsson: Plant Cell Biology, Lund University
John F. Allen: Plant Cell Biology, Lund University
Nature, 1999, vol. 397, issue 6720, 625-628
Abstract:
Abstract Redox chemistry—the transfer of electrons or hydrogen atoms—is central to energy conversion in respiration and photosynthesis. In photosynthesis in chloroplasts, two separate, light-driven reactions, termed photosystem I and photosystem II, are connected in series by a chain of electron carriers1,2,3. The redox state of one connecting electron carrier, plastoquinone, governs the distribution of absorbed light energy between photosystems I and II by controlling the phosphorylation of a mobile, light-harvesting, pigment–protein complex4,5. Here we show that the redox state of plastoquinone also controls the rate of transcription of genes encoding reaction-centre apoproteins of photosystem I and photosystem II. As a result of this control, the stoichiometry between the two photosystems changes in a way that counteracts the inefficiency produced when either photosystem limits the rate of the other. In eukaryotes, these reaction-centre proteins are encoded universally within the chloroplast. Photosynthetic control of chloroplast gene expression indicates an evolutionary explanation for this rule: the redox signal-transduction pathway can be short, the response rapid, and the control direct.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/17624 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:397:y:1999:i:6720:d:10.1038_17624
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/17624
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().