EconPapers    
Economics at your fingertips  
 

The effect of magnetic fields on γ-ray bursts inferred from multi-wavelength observations of the burst of 23 January 1999

Titus Galama, M. S. Briggs, R. A. M. J. Wijers, P. M. Vreeswijk, E. Rol, D. Band, J. van Paradijs, C. Kouveliotou, R. D. Preece, M. Bremer, I. A. Smith, R. P. J. Tilanus, A. G. de Bruyn, R. G. Strom, G. Pooley, A. J. Castro-Tirado, N. Tanvir, C. Robinson, K. Hurley, J. Heise, J. Telting, R. G. M. Rutten, C. Packham, R. Swaters, J. K. Davies, A. Fassia, S. F. Green, M. J. Foster, R. Sagar, A. K. Pandey, Nilakshi, R. K. S. Yadav, E. O. Ofek, E. Leibowitz, P. Ibbetson, J. Rhoads, E. Falco, C. Petry, C. Impey, T. R. Geballe and D. Bhattacharya
Additional contact information
M. S. Briggs: University of Alabama in Huntsville
R. A. M. J. Wijers: SUNY Stony Brook
P. M. Vreeswijk: Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, & Center for High Energy Astrophysics
E. Rol: Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, & Center for High Energy Astrophysics
D. Band: CASS, University of California in San Diego
J. van Paradijs: Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, & Center for High Energy Astrophysics
C. Kouveliotou: Universities Space Research Association;
R. D. Preece: University of Alabama in Huntsville
M. Bremer: Institut de Radio Astronomie Millimétrique
I. A. Smith: Rice University MS-108
R. P. J. Tilanus: Joint Astronomy Centre, 660 North A'ohoku Place
A. G. de Bruyn: NFRA
R. G. Strom: Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, & Center for High Energy Astrophysics
G. Pooley: Mullard Radio Astronomy Observatory, Cavendish Laboratory, University of Cambridge
A. J. Castro-Tirado: Laboratorio de Astrofísica Espacial y Física Fundamental (LAEFF-INTA)
N. Tanvir: Institute of Astronomy
C. Robinson: National Science Foundation
K. Hurley: University of California at Berkeley, Space Sciences Laboratory
J. Heise: Space Research Organisation Netherlands (SRON)
J. Telting: Isaac Newton Group, Apartado de Correos, 321
R. G. M. Rutten: Isaac Newton Group, Apartado de Correos, 321
C. Packham: Isaac Newton Group, Apartado de Correos, 321
R. Swaters: Kapteyn Astronomical Institute
J. K. Davies: Joint Astronomy Centre, 660 North A'ohoku Place
A. Fassia: Astrophysics Group, Blackett Laboratory, Imperial College
S. F. Green: Unit for Space Sciences and Astrophysics, School of Physical Sciences, Physics Laboratory, University of Kent at Canterbury
M. J. Foster: Unit for Space Sciences and Astrophysics, School of Physical Sciences, Physics Laboratory, University of Kent at Canterbury
R. Sagar: U.P. State Observatory
A. K. Pandey: U.P. State Observatory
Nilakshi: U.P. State Observatory
R. K. S. Yadav: U.P. State Observatory
E. O. Ofek: Wise Observatory, Tel Aviv University, Ramat Aviv
E. Leibowitz: Wise Observatory, Tel Aviv University, Ramat Aviv
P. Ibbetson: Wise Observatory, Tel Aviv University, Ramat Aviv
J. Rhoads: Kitt Peak National Observatory, 950 N.
E. Falco: Harvard-Smithsonian Center for Astrophysics
C. Petry: Steward Observatory, University of Arizona
C. Impey: Steward Observatory, University of Arizona
T. R. Geballe: Gemini Observatory, 670 N. A'ohoku Place, University Park
D. Bhattacharya: Raman Research Institute

Nature, 1999, vol. 398, issue 6726, 394-399

Abstract: Abstract Gamma-ray bursts (GRBs) are thought to arise when an extremely relativistic outflow of particles from a massive explosion (the nature of which is still unclear) interacts with material surrounding the site of the explosion. Observations of the evolving changes in emission at many wavelengths allow us to investigate the origin of the photons, and so potentially determine the nature of the explosion. Here we report the results of γ-ray, optical, infrared, submillimetre, millimetre and radio observations of the burst GRB990123 and its afterglow. Our interpretation of the data indicates that the initial and afterglow emissions are associated with three distinct regions in the fireball. The peak flux of the afterglow, one day after the burst, has a lower frequency than observed for other bursts; this explains the short-lived radio emission. We suggest that the differences between bursts reflect variations in the magnetic-field strength in the afterglow-emitting regions.

Date: 1999
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/18828 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:398:y:1999:i:6726:d:10.1038_18828

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/18828

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:398:y:1999:i:6726:d:10.1038_18828