EconPapers    
Economics at your fingertips  
 

Prisoner's dilemma in an RNA virus

Paul E. Turner () and Lin Chao
Additional contact information
Paul E. Turner: University of Maryland
Lin Chao: University of Maryland

Nature, 1999, vol. 398, issue 6726, 441-443

Abstract: Abstract The evolution of competitive interactions among viruses1 was studied in the RNA phage φ6 at high and low multiplicities of infection (that is, at high and low ratios of infecting phage to host cells). At high multiplicities, many phage infect and reproduce in the same host cell, whereas at low multiplicities the viruses reproduce mainly as clones. An unexpected result of this study1 was that phage grown at high rates of co-infection increased in fitness initially, but then evolved lowered fitness. Here we show that the fitness of the high-multiplicity phage relative to their ancestors generates a pay-off matrix conforming to the prisoner's dilemma strategy of game theory2,3. In this strategy, defection (selfishness) evolves, despite the greater fitness pay-off that would result if all players were to cooperate. Viral cooperation and defection can be defined as, respectively, the manufacturing and sequestering of diffusible (shared) intracellular products. Because the low-multiplicity phage did not evolve lowered fitness, we attribute the evolution of selfishness to the lack of clonal structure and the mixing of unrelated genotypes at high multiplicity4,5,6.

Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.nature.com/articles/18913 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:398:y:1999:i:6726:d:10.1038_18913

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/18913

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:398:y:1999:i:6726:d:10.1038_18913