Control of crystal nucleation by patterned self-assembled monolayers
Joanna Aizenberg (),
Andrew J. Black and
George M. Whitesides ()
Additional contact information
Joanna Aizenberg: Bell Laboratories, Lucent Technologies
Andrew J. Black: Harvard University
George M. Whitesides: Harvard University
Nature, 1999, vol. 398, issue 6727, 495-498
Abstract:
Abstract An important requirement in the fabrication of advanced inorganic materials, such as ceramics and semiconductors, is control over crystallization1,2,3,4. In principle, the synthetic growth of crystals can be guided by molecular recognition at interfaces5,6,7,8,9,10,11,12,13,14,15,16. But it remains a practical challenge to control simultaneously the density and pattern of nucleation events, and the sizes and orientations of the growing crystals. Here we report a route to crystal formation, using micropatterned self-assembled monolayers17,18, which affords control over all these parameters. We begin with a metal substrate patterned with a self-assembled monolayer having areas of different nucleating activity—in this case, an array of acid-terminated regions separated by methyl-terminated regions. By immersing the patterned substrates in a calcium chloride solution and exposing them to carbon dioxide, we achieve ordered crystallization of calcite in the polar regions, where the rate of nucleation is fastest; crystallization can be completely suppressed elsewhere by a suitable choice of array spacing, which ensures that the solution is undersaturated in the methyl-terminated regions. The nucleation density (the number of crystals formed per active site) may be controlled by varying the area and distribution of the polar regions, and we can manipulate the crystallographic orientation by using different functional groups and substrates.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/19047 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:398:y:1999:i:6727:d:10.1038_19047
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/19047
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().