EconPapers    
Economics at your fingertips  
 

Efficient fault-tolerant quantum computing

Andrew M. Steane ()
Additional contact information
Andrew M. Steane: Clarendon Laboratory

Nature, 1999, vol. 399, issue 6732, 124-126

Abstract: Abstract Quantum computing1—the processing of information according to the fundamental laws of physics—offers a means to solve efficiently a small but significant set of classically intractable problems. Quantum computers are based on the controlled manipulation of entangled quantum states, which are extremely sensitive to noise and imprecision; active correction of errors must therefore be implemented without causing loss of coherence. Quantum error-correction theory2,3,4,5,6,7,8,9 has made great progress in this regard, by predicting error-correcting ‘codeword’ quantum states. But the coding is inefficient and requires many quantum bits10,11,12, which results in physically unwieldy fault-tolerant quantum circuits10,11,12,13,14,15,16,17,18. Here I report a general technique for circumventing the trade-off between the achieved noise tolerance and the scale-up in computer size that is required to realize the error correction. I adapt the recovery operation (the process by which noise is suppressed through error detection and correction) to simultaneously correct errors and perform a useful measurement that drives the computation. The result is that a quantum computer need be only an order of magnitude larger than the logic device contained within it. For example, the physical scale-up factor10,11 required to factorize a thousand-digit number is reduced from 1,500 to 22, while preserving the original tolerated gate error rate (10−5) and memory noise per bit (10−7). The difficulty of realizing a useful quantum computer is therefore significantly reduced.

Date: 1999
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/20127 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:399:y:1999:i:6732:d:10.1038_20127

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/20127

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:399:y:1999:i:6732:d:10.1038_20127