Size and form in efficient transportation networks
Jayanth R. Banavar (),
Amos Maritan and
Andrea Rinaldo
Additional contact information
Jayanth R. Banavar: Department of Physics and Center for Materials Physics
Amos Maritan: International School for Advanced Studies (SISSA)
Andrea Rinaldo: Massachusetts Institute of Technology, Cambridge
Nature, 1999, vol. 399, issue 6732, 130-132
Abstract:
Abstract Many biological processes, from cellular metabolism to population dynamics, are characterized by allometric scaling (power-law) relationships between size and rate1,2,3,4,5,6,7,8,9,10. An outstanding question is whether typical allometric scaling relationships—the power-law dependence of a biological rate on body mass—can be understood by considering the general features of branching networks serving a particular volume. Distributed networks in nature stem from the need for effective connectivity11, and occur both in biological systems such as cardiovascular and respiratory networks1,2,3,4,5,6,7,8 and plant vascular and root systems1,9,10, and in inanimate systems such as the drainage network of river basins12. Here we derive a general relationship between size and flow rates in arbitrary networks with local connectivity. Our theory accounts in a general way for the quarter-power allometric scaling of living organisms1,2,3,4,5,6,7,8,9,10, recently derived8 under specific assumptions for particular network geometries. It also predicts scaling relations applicable to all efficient transportation networks, which we verify from observational data on the river drainage basins. Allometric scaling is therefore shown to originate from the general features of networks irrespective of dynamical or geometric assumptions.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (50)
Downloads: (external link)
https://www.nature.com/articles/20144 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:399:y:1999:i:6732:d:10.1038_20144
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/20144
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().