Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins
Uta-Maria Ohndorf,
Mark A. Rould,
Qing He,
Carl O. Pabo and
Stephen J. Lippard ()
Additional contact information
Uta-Maria Ohndorf: Massachusetts Institute of Technology
Mark A. Rould: Massachusetts Institute of Technology
Qing He: Massachusetts Institute of Technology
Carl O. Pabo: Massachusetts Institute of Technology
Stephen J. Lippard: Massachusetts Institute of Technology
Nature, 1999, vol. 399, issue 6737, 708-712
Abstract:
Abstract The anticancer activity of cis -diamminedichloroplatinum(II) (cisplatin) arises from its ability to damage DNA, with the major adducts formed being intrastrand d(GpG) and d(ApG) crosslinks1. These crosslinks bend and unwind the duplex, and the altered structure attracts high-mobility-group domain (HMG) and other proteins2. This binding of HMG-domain proteins to cisplatin-modified DNA has been postulated to mediate the antitumour properties of the drug3,4. Many HMG-domain proteins recognize altered DNA structures such as four-way junctions and cisplatin-modified DNA5, but until now the molecular basis for this recognition was unknown. Here we describe mutagenesis, hydroxyl-radical footprinting and X-ray studies that elucidate the structure of a 1:1 cisplatin-modified DNA/HMG-domain complex. Domain A of the structure-specific HMG-domain protein HMG1 binds to the widened minor groove of a 16-base-pair DNA duplex containing a site-specific cis -[Pt(NH3)2{d(GpG)-N7(1),-N7(2)}] adduct. The DNA is strongly kinked at a hydrophobic notch created at the platinum–DNA crosslink and protein binding extends exclusively to the 3′ side of the platinated strand. A phenylalanine residue at position 37 intercalates into a hydrophobic notch created at the platinum crosslinked d(GpG) site and binding of the domain is dramatically reduced in a mutant in which alanine is substituted for phenylalanine at this position.
Date: 1999
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/21460 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:399:y:1999:i:6737:d:10.1038_21460
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/21460
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().