EconPapers    
Economics at your fingertips  
 

Motion streaks provide a spatial code for motion direction

Wilson S. Geisler ()
Additional contact information
Wilson S. Geisler: University of Texas at Austin

Nature, 1999, vol. 400, issue 6739, 65-69

Abstract: Abstract Although many neurons in the primary visual cortex (V1) of primates are direction selective1, they provide ambiguous information about the direction of motion of a stimulus2,3. There is evidence that one of the ways in which the visual system resolves this ambiguity is by computing, from the responses of V1 neurons, velocity components in two or more spatial orientations and then combining these velocity components2,3,4,5,6,7,8,9. Here I consider another potential neural mechanism for determining motion direction. When a localized image feature moves fast enough, it should become smeared in space owing to temporal integration in the visual system, creating a spatial signal—a ‘motion streak’—oriented in the direction of the motion. The orientation masking and adaptation experiments reported here show that these spatial signals for motion direction exist in the human visual system for feature speeds above about 1 feature width per 100 ms. Computer simulations show that this psychophysical finding is consistent with the known response properties of V1 neurons, and that these spatial signals, when appropriately processed, are sufficient to determine motion direction in natural images.

Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/21886 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:400:y:1999:i:6739:d:10.1038_21886

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/21886

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:400:y:1999:i:6739:d:10.1038_21886