The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum
S. Bowman (),
D. Lawson,
D. Basham,
D Brown,
T. Chillingworth,
C. M. Churcher,
A. Craig,
R. M. Davies,
K. Devlin,
T. Feltwell,
S. Gentles,
R. Gwilliam,
N. Hamlin,
D. Harris,
S. Holroyd,
T. Hornsby,
P. Horrocks,
K. Jagels,
B. Jassal,
S. Kyes,
J. McLean,
S. Moule,
K. Mungall,
L. Murphy,
K. Oliver,
M. A. Quail,
M.-A. Rajandream,
S. Rutter,
J. Skelton,
R. Squares,
S. Squares,
J. E. Sulston,
S. Whitehead,
J. R. Woodward,
C. Newbold and
B. G. Barrell
Additional contact information
S. Bowman: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
D. Lawson: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
D. Basham: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
D Brown: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
T. Chillingworth: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
C. M. Churcher: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
A. Craig: Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital
R. M. Davies: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
K. Devlin: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
T. Feltwell: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
S. Gentles: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
R. Gwilliam: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
N. Hamlin: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
D. Harris: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
S. Holroyd: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
T. Hornsby: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
P. Horrocks: Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital
K. Jagels: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
B. Jassal: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
S. Kyes: Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital
J. McLean: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
S. Moule: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
K. Mungall: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
L. Murphy: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
K. Oliver: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
M. A. Quail: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
M.-A. Rajandream: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
S. Rutter: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
J. Skelton: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
R. Squares: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
S. Squares: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
J. E. Sulston: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
S. Whitehead: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
J. R. Woodward: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
C. Newbold: Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital
B. G. Barrell: Pathogen Sequencing Unit, Sanger Centre, Wellcome Trust Genome Campus
Nature, 1999, vol. 400, issue 6744, 532-538
Abstract:
Abstract Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5′ or 3′ exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.
Date: 1999
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/22964 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:400:y:1999:i:6744:d:10.1038_22964
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/22964
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().