Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors
Heinz G. Körschen,
Michael Beyermann,
Frank Müller,
Martin Heck,
Marius Vantler,
Karl-Wilhelm Koch,
Roland Kellner,
Uwe Wolfrum,
Christian Bode,
Klaus Peter Hofmann and
U. Benjamin Kaupp ()
Additional contact information
Heinz G. Körschen: Institut für Biologische Informationsverarbeitung
Michael Beyermann: Forschungsinstitut für Molekulare Pharmakologie
Frank Müller: Institut für Biologische Informationsverarbeitung
Martin Heck: Institut für Medizinische Physik und Biophysik, Universitätsklinikum Charité, Humboldt-Universität
Marius Vantler: Institut für Biologische Informationsverarbeitung
Karl-Wilhelm Koch: Institut für Biologische Informationsverarbeitung
Roland Kellner: Institut für Physiologische Chemie und Pathobiochemie, Universität Mainz
Uwe Wolfrum: Institut für Zoologie, Universität Karlsruhe
Christian Bode: Institut für Zoologie, Universität Karlsruhe
Klaus Peter Hofmann: Institut für Medizinische Physik und Biophysik, Universitätsklinikum Charité, Humboldt-Universität
U. Benjamin Kaupp: Institut für Biologische Informationsverarbeitung
Nature, 1999, vol. 400, issue 6746, 761-766
Abstract:
Abstract The assembly of signalling molecules into macromolecular complexes (transducisomes) provides specificity, sensitivity and speed in intracellular signalling pathways1,2. Rod photoreceptors in the eye contain an unusual set of glutamic-acid-rich proteins (GARPs) of unknown function3,4,5,6,7. GARPs exist as two soluble forms, GARP1 and GARP2, and as a large cytoplasmic domain (GARP′ part) of the β-subunit of the cyclic GMP-gated channel3,4,5,6,7. Here we identify GARPs as multivalent proteins that interact with the keyplayers of cGMP signalling, phosphodiesterase and guanylate cyclase, and with a retina-specific ATP-binding cassette transporter (ABCR)8,9, through four, short, repetitive sequences. In electron micrographs, GARPs are restricted to the rim region and incisures of discs in close proximity to the guanylate cyclase and ABCR, whereas the phosphodiesterase is randomly distributed. GARP2, the most abundant splice form, associates more strongly with light-activated than with inactive phosphodiesterase, and GARP2 potently inhibits phosphodiesterase activity. Thus, the GARPs organize a dynamic protein complex near the disc rim that may control cGMP turnover and possibly other light-dependent processes. Because there are no similar GARPs in cones, we propose that GARPs may prevent unnecessary cGMP turnover during daylight, when rods are held in saturation by the relatively high light levels.
Date: 1999
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/23468 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:400:y:1999:i:6746:d:10.1038_23468
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/23468
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().