Measurement of gravitational acceleration by dropping atoms
Achim Peters,
Keng Yeow Chung and
Steven Chu ()
Additional contact information
Achim Peters: Stanford University
Keng Yeow Chung: Stanford University
Steven Chu: Stanford University
Nature, 1999, vol. 400, issue 6747, 849-852
Abstract:
Abstract Laser-cooling of atoms and atom-trapping are finding increasing application in many areas of science1. One important use of laser-cooled atoms is in atom interferometers2. In these devices, an atom is placed into a superposition of two or more spatially separated atomic states; these states are each described by a quantum-mechanical phase term, which will interfere with one another if they are brought back together at a later time. Atom interferometers have been shown to be very precise inertial sensors for acceleration3,4, rotation5 and for the measurement of the fine structure constant6. Here we use an atom interferometer based on a fountain of laser-cooled atoms to measure g, the acceleration of gravity. Through detailed investigation and elimination of systematic effects that may affect the accuracy ofthe measurement, we achieve an absolute uncertainty of Δg/g ≈ 3 × 10−9, representing a million-fold increase in absoluteaccuracy compared with previous atom-interferometer experiments7. We also compare our measurement with the value of g obtained at the same laboratory site using a Michelson interferometer gravimeter (a modern equivalent of Galileo's ‘leaning tower’ experiment in Pisa). We show that the macroscopic glass object used in this instrument falls with the same acceleration, to within 7 parts in 109, as a quantum-mechanical caesium atom.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/23655 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:400:y:1999:i:6747:d:10.1038_23655
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/23655
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().