Preparing topological states of a Bose–Einstein condensate
J. E. Williams and
M. J. Holland ()
Additional contact information
J. E. Williams: University of Colorado
M. J. Holland: University of Colorado
Nature, 1999, vol. 401, issue 6753, 568-572
Abstract:
Abstract Observations of Bose–Einstein condensates—macroscopic populations of ultracold atoms occupying a single quantum state—in dilute alkali-metal and hydrogen gases have stimulated a great deal of research into the statistical physics of weakly interacting quantum degenerate systems1,2. Recent experiments offer a means of exploring fundamental low-temperature physics in a controllable manner. A current experimental goal in the study of trapped Bose gases is the observation of superfluid-like behaviour, analogous to the persistent currents seen in superfluid liquid helium which flow without observable viscosity. The ‘super’ properties of Bose-condensed systems occur because the macroscopic occupation of a quantized mode provides a stabilizing mechanism that inhibits decay through thermal relaxation3. Here we show how to selectively generate superfluid vortex modes with different angular momenta in a Bose–Einstein condensate. Our approach involves solving the time-dependent equation of motion of a two-component condensate with strongly coupled internal atomic states, as recently investigated experimentally4,5. The generation of vortices relies on the coupling between the states (achieved by applying an electromagnetic field), combined with mechanical rotation of the trapping potentials which confine the condensate.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/44095 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:401:y:1999:i:6753:d:10.1038_44095
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/44095
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().