Combined dynamic and geochemical evidence for convergent melt flow beneath the East Pacific Rise
Marc Spiegelman () and
Jennifer R. Reynolds
Additional contact information
Marc Spiegelman: Lamont-Doherty Earth Observatory
Jennifer R. Reynolds: Lamont-Doherty Earth Observatory
Nature, 1999, vol. 402, issue 6759, 282-285
Abstract:
Abstract Determining the flow of magma and solid mantle beneath mid-ocean ridges is crucial for understanding the dynamics of plate spreading and the formation of new oceanic crust. Theoretical models suggest a range of possible flow regimes—from passive, plate-driven flows1,2 to ‘active’, buoyantly driven solid convection3,4,5,6,7—and have spurred an ambitious field programme to attempt to distinguish these flow fields using geophysical techniques8. Models that explore the geochemical consequences of melt transport9, however, suggest that these different flow fields can also have distinctive geochemical signatures. Here we compare model predictions to the chemistry of well located and closely sampled basalts from across the ridge-crest of the fast-spreading East Pacific Rise at 12° N (refs 10,11,12). These data show features that are not explained by traditional geochemical models of ocean-ridge magma generation, yet are consistent with the geochemical consequences of the new transport models that have passive mantle flow and convergent lateral melt migration. These results are also consistent with those of the seismic MELT experiment8, but add new information about the relative flow of melt and solid in the mantle which is probably unmeasurable by geophysical techniques.
Date: 1999
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/46260 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:402:y:1999:i:6759:d:10.1038_46260
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/46260
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().