EconPapers    
Economics at your fingertips  
 

The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System

Edward W. Thommes, Martin J. Duncan () and Harold F. Levison
Additional contact information
Edward W. Thommes: Queen's University
Martin J. Duncan: Queen's University
Harold F. Levison: Southwest Research Institute

Nature, 1999, vol. 402, issue 6762, 635-638

Abstract: Abstract Planets are believed to have formed through the accumulation of a large number of small bodies1,2,3,4. In the case of the gas-giant planets Jupiter and Saturn, they accreted a significant amount of gas directly from the protosolar nebula after accumulating solid cores of about 5–15 Earth masses5,6. Such models, however, have been unable to produce the smaller ice giants7,8 Uranus and Neptune at their present locations, because in that region of the Solar System the small planetary bodies will have been more widely spaced, and less tightly bound gravitationally to the Sun. When applied to the current Jupiter–Saturn zone, a recent theory predicts that, in addition to the solid cores of Jupiter and Saturn, two or three other solid bodies of comparable mass are likely to have formed9. Here we report the results of model calculations that demonstrate that such cores will have been gravitationally scattered outwards as Jupiter, and perhaps Saturn, accreted nebular gas. The orbits of these cores then evolve into orbits that resemble those of Uranus and Neptune, as a result of gravitational interactions with the small bodies in the outer disk of the protosolar nebula.

Date: 1999
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/45185 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:402:y:1999:i:6762:d:10.1038_45185

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/45185

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:402:y:1999:i:6762:d:10.1038_45185