Patterning liquid flow on the microscopic scale
Dawn E. Kataoka and
Sandra M. Troian ()
Additional contact information
Dawn E. Kataoka: Princeton University
Sandra M. Troian: Princeton University
Nature, 1999, vol. 402, issue 6763, 794-797
Abstract:
Abstract Microscopic fluidic devices, ranging from surgical endoscopes1 and microelectromechanical systems2 to the commercial ‘lab-on-a-chip’ (ref. 29), allow chemical analysis and synthesis on scales unimaginable a decade ago. These devices transport miniscule quantities of liquid along networked channels. Several techniques have been developed to control small-scale flow, including micromechanical3 and electrohydrodynamic4 pumping, electro-osmotic flow5, electrowetting6,7 and thermocapillary pumping8,9,10. Most of these schemes require micro-machining of interior channels and kilovolt sources to drive electrokinetic flow. Recent work8,9,10 has suggested the use of temperature instead of electric fields to derive droplet movement. Here we demonstrate a simple, alternative technique utilizing temperature gradients to direct microscopic flow on a selectively patterned surface (consisting of alternating stripes of bare and coated SiO2). The liquid is manipulated by simultaneously applying a shear stress at the air–liquid interface and a variable surface energy pattern at the liquid–solid interface. To further this technology, we provide a theoretical estimate of the smallest feature size attainable with this technique.
Date: 1999
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/45521 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:402:y:1999:i:6763:d:10.1038_45521
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/45521
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().