KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement
Bertrand Huard () and
Lars Karlsson
Additional contact information
Bertrand Huard: The R.W. Johnson Pharmaceutical Research Institute
Lars Karlsson: The R.W. Johnson Pharmaceutical Research Institute
Nature, 2000, vol. 403, issue 6767, 325-328
Abstract:
Abstract Natural killer cell tolerance is maintained by the interaction of killer inhibitory receptors (KIRs) with self-major histocompatibility complex class I gene products. A subset of T cells also expresses inhibitory receptors, but the functional significance of these receptors on T cells is unclear1,2,3. Here we show that, in the absence of T-cell receptor (TCR) engagement, KIRs expressed on CD8+ T cells are slowly downregulated by KIR ligands expressed on antigen-presenting cells. The resulting expression levels of KIR are no longer able to inhibit T-cell function. In contrast, TCR engagement sustains KIR expression, and re-induces functional levels of KIR expression after ligand-induced downregulation of KIR. Our data indicate that KIR expression on CD8+ T cells in vivo may be maintained through continuous encounters with antigen. As KIR-mediated inhibition of T-cell activation can be bypassed at high antigen concentrations, dynamic KIR expression may mediate T-cell tolerance to self-antigens by sparing self-reactive T cells, thus enabling them to mediate potentially useful immune functions to quantitatively or qualitatively different antigens.
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/35002105 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:403:y:2000:i:6767:d:10.1038_35002105
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35002105
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().