EconPapers    
Economics at your fingertips  
 

Simple rules yield complex food webs

Richard J. Williams and Neo D. Martinez ()
Additional contact information
Richard J. Williams: Romberg Tiburon Center, San Francisco State University
Neo D. Martinez: Romberg Tiburon Center, San Francisco State University

Nature, 2000, vol. 404, issue 6774, 180-183

Abstract: Abstract Several of the most ambitious theories in ecology1,2,3,4,5,6,7,8,9,10,11,12,13,14 describe food webs that document the structure of strong and weak trophic links9 that is responsible for ecological dynamics among diverse assemblages of species4,11,12,13. Early mechanism-based theory asserted that food webs have little omnivory and several properties that are independent of species richness1,2,3,4,6. This theory was overturned by empirical studies that found food webs to be much more complex5,7,8,9,14,15,16,17,18, but these studies did not provide mechanistic explanations for the complexity9. Here we show that a remarkably simple model fills this scientific void by successfully predicting key structural properties of the most complex and comprehensive food webs in the primary literature. These properties include the fractions of species at top, intermediate and basal trophic levels, the means and variabilities of generality, vulnerability and food-chain length, and the degrees of cannibalism, omnivory, looping and trophic similarity. Using only two empirical parameters, species number and connectance, our ‘niche model’ extends the existing ‘cascade model’3,19 and improves its fit ten-fold by constraining species to consume a contiguous sequence of prey in a one-dimensional trophic niche20.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (55)

Downloads: (external link)
https://www.nature.com/articles/35004572 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:404:y:2000:i:6774:d:10.1038_35004572

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35004572

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:404:y:2000:i:6774:d:10.1038_35004572