EconPapers    
Economics at your fingertips  
 

Inhibitory threshold for critical-period activation in primary visual cortex

Michela Fagiolini and Takao K. Hensch ()
Additional contact information
Michela Fagiolini: Laboratory for Neuronal Circuit Development, Brain Science Institute RIKEN
Takao K. Hensch: Laboratory for Neuronal Circuit Development, Brain Science Institute RIKEN

Nature, 2000, vol. 404, issue 6774, 183-186

Abstract: Abstract Neuronal circuits across several systems display remarkable plasticity to sensory input during postnatal development1,2,3,4,5,6,7,8,9,10. Experience-dependent refinements are often restricted to well-defined critical periods in early life, but how these are established remains mostly unknown. A representative example is the loss of responsiveness in neocortex to an eye deprived of vision2,3,4,5,6. Here we show that the potential for plasticity is retained throughout life until an inhibitory threshold is attained. In mice of all ages lacking an isoform of GABA (γ-aminobutyric acid) synthetic enzyme (GAD65), as well as in immature wild-type animals before the onset of their natural critical period, benzodiazepines selectively reduced a prolonged discharge phenotype to unmask plasticity. Enhancing GABA-mediated transmission early in life rendered mutant animals insensitive to monocular deprivation as adults, similar to normal wild-type mice. Short-term presynaptic dynamics reflected a synaptic reorganization in GAD65 knockout mice after chronic diazepam treatment. A threshold level of inhibition within the visual cortex may thus trigger, once in life, an experience-dependent critical period for circuit consolidation, which may otherwise lie dormant.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/35004582 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:404:y:2000:i:6774:d:10.1038_35004582

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35004582

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:404:y:2000:i:6774:d:10.1038_35004582