Sensitivity of the geomagnetic axial dipole to thermal core–mantle interactions
Jeremy Bloxham ()
Additional contact information
Jeremy Bloxham: Harvard University
Nature, 2000, vol. 405, issue 6782, 63-65
Abstract:
Abstract Since the work of William Gilbert in 1600 (ref. 1), it has been widely believed that the Earth's magnetic field, when suitably time-averaged, is that of a magnetic dipole positioned at the Earth's centre and aligned with the rotational axis. This ‘geocentric axial dipole’ (GAD) hypothesis has been the central model for the study of the Earth's magnetic field—it underpins almost all interpretations of palaeomagnetic data, whether for studies of palaeomagnetic secular variation, for plate tectonic reconstructions, or for studies of palaeoclimate2. Although the GAD hypothesis appears to provide a good description of the Earth's magnetic field over at least the past 100 Myr (ref. 2), it is difficult to test the hypothesis for earlier periods, and there is some evidence that a more complicated model is required for the period before 250 Myr ago3. Kent and Smethurst3 suggested that this additional complexity might be because the inner core would have been smaller at that time. Here I use a numerical geodynamo model and find that reducing the size of the inner core does not significantly change the character of the magnetic field. I also consider an alternative process that could lead to the breakdown of the GAD hypothesis on this timescale, the evolution of heat-flux variations at the core–mantle boundary, induced by mantle convection. I find that a simple pattern of heat-flux variations at the core–mantle boundary, which is plausible for times before the Mesozoic era, results in a strong octupolar contribution to the field, consistent with previous findings3.
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/35011045 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:405:y:2000:i:6782:d:10.1038_35011045
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35011045
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().