A role for excreted quinones in extracellular electron transfer
Dianne K. Newman () and
Roberto Kolter
Additional contact information
Dianne K. Newman: Harvard Medical School
Roberto Kolter: Harvard Medical School
Nature, 2000, vol. 405, issue 6782, 94-97
Abstract:
Abstract Respiratory processes in bacteria are remarkable because of their ability to use a variety of compounds, including insoluble minerals, as terminal electron acceptors1. Although much is known about microbial electron transport to soluble electron acceptors, little is understood about electron transport to insoluble compounds such as ferric oxides2,3. In anaerobic environments, humic substances can serve as electron acceptors and also as electron shuttles to ferric oxides4,5,6. To explore this process, we identified mutants in Shewanella putrefaciens that are unable to respire on humic substances. Here we show that these mutants contain disruptions in a gene that is involved in the biosynthesis of menaquinone. During growth, the wild type releases a menaquinone-related redox-active small molecule into the medium that complements the mutants. This finding raises the possibility that electron transfer to a variety of oxidants, including poorly soluble minerals, may be mediated by microbially excreted quinones that have yet to be identified.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/35011098 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:405:y:2000:i:6782:d:10.1038_35011098
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35011098
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().