EconPapers    
Economics at your fingertips  
 

Acceleration of quantum decay processes by frequent observations

A. G. Kofman and G. Kurizki ()
Additional contact information
A. G. Kofman: The Weizmann Institute of Science
G. Kurizki: The Weizmann Institute of Science

Nature, 2000, vol. 405, issue 6786, 546-550

Abstract: Abstract In theory, the decay of any unstable quantum state can be inhibited by sufficiently frequent measurements—the quantum Zeno effect1,2,3,4,5,6,7,8,9,10. Although this prediction has been tested only for transitions between two coupled, essentially stable states5,6,7,8, the quantum Zeno effect is thought to be a general feature of quantum mechanics, applicable to radioactive3 or radiative decay processes6,9. This generality arises from the assumption that, in principle, successive observations can be made at time intervals too short for the system to change appreciably1,2,3,4. Here we show not only that the quantum Zeno effect is fundamentally unattainable in radiative or radioactive decay (because the required measurement rates would cause the system to disintegrate), but also that these processes may be accelerated by frequent measurements. We find that the modification of the decay process is determined by the energy spread incurred by the measurements (as a result of the time–energy uncertainty relation), and the distribution of states to which the decaying state is coupled. Whereas the inhibitory quantum Zeno effect may be feasible in a limited class of systems, the opposite effect—accelerated decay—appears to be much more ubiquitous.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/35014537 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:405:y:2000:i:6786:d:10.1038_35014537

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35014537

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:405:y:2000:i:6786:d:10.1038_35014537