EconPapers    
Economics at your fingertips  
 

Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway

Glenn C. Turner, Fangyong Du and Alexander Varshavsky ()
Additional contact information
Glenn C. Turner: California Institute of Technology
Fangyong Du: California Institute of Technology
Alexander Varshavsky: California Institute of Technology

Nature, 2000, vol. 405, issue 6786, 579-583

Abstract: Abstract Protein degradation by the ubiquitin system controls the intracellular concentrations of many regulatory proteins. A protein substrate of the ubiquitin system is conjugated to ubiquitin through the action of three enzymes, E1, E2 and E3, with the degradation signal (degron) of the substrate recognized by E3 (refs 1,2,3). The resulting multi-ubiquitylated substrate is degraded by the 26S proteasome4. Here we describe the physiological regulation of a ubiquitin-dependent pathway through allosteric modulation of its E3 activity by small compounds. Ubr1, the E3 enzyme of the N-end rule pathway (a ubiquitin-dependent proteolytic system) in Saccharomyces cerevisiae mediates the degradation of Cup9, a transcriptional repressor of the peptide transporter Ptr2 (ref. 5). Ubr1 also targets proteins that have destabilizing amino-terminal residues6. We show that the degradation of Cup9 is allosterically activated by dipeptides with destabilizing N-terminal residues. In the resulting positive feedback circuit, imported dipeptides bind to Ubr1 and accelerate the Ubr1-dependent degradation of Cup9, thereby de-repressing the expression of Ptr2 and increasing the cell's capacity to import peptides. These findings identify the physiological rationale for the targeting of Cup9 by Ubr1, and indicate that small compounds may regulate other ubiquitin-dependent pathways.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/35014629 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:405:y:2000:i:6786:d:10.1038_35014629

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35014629

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:405:y:2000:i:6786:d:10.1038_35014629