EconPapers    
Economics at your fingertips  
 

A deeply knotted protein structure and how it might fold

William R. Taylor ()
Additional contact information
William R. Taylor: National Institute for Medical Research

Nature, 2000, vol. 406, issue 6798, 916-919

Abstract: Abstract The search for knots in protein has uncovered little that would cause Alexander the Great to reach for his sword. Excluding knots formed by post-translational crosslinking, the few proteins considered to be knotted form simple trefoil knots with one end of the chain extending through a loop by only a few residues1,2, ten in the ‘best’ example3. A knot in an open chain (as distinct from a closed circle) is not rigorously defined and many weak protein knots disappear if the structure is viewed from a different angle. Here I describe a computer algorithm to detect knots in open chains that is not sensitive to viewpoint and that can define the region of the chain giving rise to the knot. It characterizes knots in proteins by the number of residues that must be removed from each end to abolish the knot. I applied this algorithm to the protein structure database and discovered a deep, figure-of-eight knot in the plant protein acetohydroxy acid isomeroreductase4. I propose a protein folding pathway that may explain how such a knot is formed.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.nature.com/articles/35022623 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:406:y:2000:i:6798:d:10.1038_35022623

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35022623

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:406:y:2000:i:6798:d:10.1038_35022623