Organoplatinum crystals for gas-triggered switches
Martin Albrecht,
Martin Lutz,
Anthony L. Spek and
Gerard van Koten ()
Additional contact information
Martin Albrecht: Debye Institute
Martin Lutz: Utrecht University
Anthony L. Spek: Utrecht University
Gerard van Koten: Debye Institute
Nature, 2000, vol. 406, issue 6799, 970-974
Abstract:
Abstract Considerable effort is being devoted to the fabrication of nanoscale devices1. Molecular machines, motors and switches have been made, generally operating in solution2,3,4,5,6,7, but for most device applications (such as electronics and opto-electronics), a maximal degree of order and regularity is required8. Crystalline materials would be excellent systems for these purposes, as crystals comprise a vast number of self-assembled molecules, with a perfectly ordered three-dimensional structure9. In non-porous crystals, however, the molecules are densely packed and any change in them (due, for example, to a reaction) is likely to destroy the crystal and its properties. Here we report the controlled and fully reversible crystalline-state reaction of gaseous SO2 with non-porous crystalline materials consisting of organoplatinum molecules. This process, including repetitive expansion–reduction sequences (on gas uptake and release) of the crystal lattice, modifies the structures of these molecules without affecting their crystallinity. The process is based on the incorporation of SO2 into the colourless crystals and its subsequent liberation from the orange adducts by reversible bond formation and cleavage10. We therefore expect that these crystalline materials will find applications for gas storage devices and as opto-electronic switches11,12.
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/35023107 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:406:y:2000:i:6799:d:10.1038_35023107
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35023107
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().