Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements
Kara L. Lavender (),
Russ E. Davis and
W. Brechner Owens
Additional contact information
Kara L. Lavender: Scripps Institution of Oceanography, University of California, San Diego
Russ E. Davis: Scripps Institution of Oceanography, University of California, San Diego
W. Brechner Owens: Woods Hole Oceanographic Institution
Nature, 2000, vol. 407, issue 6800, 66-69
Abstract:
Abstract The Labrador Sea is one of the sites where convection exports surface water to the deep ocean in winter as part of the thermohaline circulation. Labrador Sea water is characteristically cold and fresh, and it can be traced at intermediate depths (500–2,000 m) across the North Atlantic Ocean, to the south and to the east of the Labrador Sea1,2,3. Widespread observations of the ocean currents that lead to this distribution of Labrador Sea water have, however, been difficult and therefore scarce. We have used more than 200 subsurface floats to measure directly basin-wide horizontal velocities at various depths in the Labrador and Irminger seas. We observe unanticipated recirculations of the mid-depth (∼700 m) cyclonic boundary currents in both basins, leading to an anticyclonic flow in the interior of the Labrador basin. About 40% of the floats from the region of deep convection left the basin within one year and were rapidly transported in the anticyclonic flow to the Irminger basin, and also eastwards into the subpolar gyre. Surprisingly, the float tracks did not clearly depict the deep western boundary current, which is the expected main pathway of Labrador Sea water in the thermohaline circulation. Rather, the flow along the boundary near Flemish Cap is dominated by eddies that transport water offshore. Our detailed observations of the velocity structure with a high data coverage suggest that we may have to revise our picture of the formation and spreading of Labrador Sea water, and future studies with similar instrumentation will allow new insights on the intermediate depth ocean circulation.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/35024048 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:407:y:2000:i:6800:d:10.1038_35024048
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35024048
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().