Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
P. Poizot,
S. Laruelle,
S. Grugeon,
L. Dupont and
J-M. Tarascon ()
Additional contact information
P. Poizot: Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007
S. Laruelle: Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007
S. Grugeon: Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007
L. Dupont: Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007
J-M. Tarascon: Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007
Nature, 2000, vol. 407, issue 6803, 496-499
Abstract:
Abstract Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge–recharge cycles. Although promising electrode systems have recently been proposed1,2,3,4,5,6,7, their lifespans are limited by Li-alloying agglomeration8 or the growth of passivation layers9, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1–5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
https://www.nature.com/articles/35035045 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:407:y:2000:i:6803:d:10.1038_35035045
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35035045
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().