An SNP map of human chromosome 22
J. C. Mullikin,
S. E. Hunt,
C. G. Cole,
B. J. Mortimore,
C. M. Rice,
J. Burton,
L. H. Matthews,
R. Pavitt,
R. W. Plumb,
S. K. Sims,
R. M. R. Ainscough,
J. Attwood,
J. M. Bailey,
K. Barlow,
R. M. M. Bruskiewich,
P. N. Butcher,
N. P. Carter,
Y. Chen,
C. M. Clee,
P. C. Coggill,
J. Davies,
R. M. Davies,
E. Dawson,
M. D. Francis,
A. A. Joy,
R. G. Lamble,
C. F. Langford,
J. Macarthy,
V. Mall,
A. Moreland,
E. K. Overton-Larty,
M. T. Ross,
L. C. Smith,
C. A. Steward,
J. E. Sulston,
E. J. Tinsley,
K. J. Turney,
D. L. Willey,
G. D. Wilson,
A. A. McMurray,
I. Dunham,
J. Rogers and
D. R. Bentley ()
Additional contact information
J. C. Mullikin: The Sanger Centre, Wellcome Trust Genome Campus
S. E. Hunt: The Sanger Centre, Wellcome Trust Genome Campus
C. G. Cole: The Sanger Centre, Wellcome Trust Genome Campus
B. J. Mortimore: The Sanger Centre, Wellcome Trust Genome Campus
C. M. Rice: The Sanger Centre, Wellcome Trust Genome Campus
J. Burton: The Sanger Centre, Wellcome Trust Genome Campus
L. H. Matthews: The Sanger Centre, Wellcome Trust Genome Campus
R. Pavitt: The Sanger Centre, Wellcome Trust Genome Campus
R. W. Plumb: The Sanger Centre, Wellcome Trust Genome Campus
S. K. Sims: The Sanger Centre, Wellcome Trust Genome Campus
R. M. R. Ainscough: The Sanger Centre, Wellcome Trust Genome Campus
J. Attwood: The Sanger Centre, Wellcome Trust Genome Campus
J. M. Bailey: The Sanger Centre, Wellcome Trust Genome Campus
K. Barlow: The Sanger Centre, Wellcome Trust Genome Campus
R. M. M. Bruskiewich: The Sanger Centre, Wellcome Trust Genome Campus
P. N. Butcher: The Sanger Centre, Wellcome Trust Genome Campus
N. P. Carter: The Sanger Centre, Wellcome Trust Genome Campus
Y. Chen: The Sanger Centre, Wellcome Trust Genome Campus
C. M. Clee: The Sanger Centre, Wellcome Trust Genome Campus
P. C. Coggill: The Sanger Centre, Wellcome Trust Genome Campus
J. Davies: The Sanger Centre, Wellcome Trust Genome Campus
R. M. Davies: The Sanger Centre, Wellcome Trust Genome Campus
E. Dawson: The Sanger Centre, Wellcome Trust Genome Campus
M. D. Francis: The Sanger Centre, Wellcome Trust Genome Campus
A. A. Joy: The Sanger Centre, Wellcome Trust Genome Campus
R. G. Lamble: The Sanger Centre, Wellcome Trust Genome Campus
C. F. Langford: The Sanger Centre, Wellcome Trust Genome Campus
J. Macarthy: The Sanger Centre, Wellcome Trust Genome Campus
V. Mall: The Sanger Centre, Wellcome Trust Genome Campus
A. Moreland: The Sanger Centre, Wellcome Trust Genome Campus
E. K. Overton-Larty: The Sanger Centre, Wellcome Trust Genome Campus
M. T. Ross: The Sanger Centre, Wellcome Trust Genome Campus
L. C. Smith: The Sanger Centre, Wellcome Trust Genome Campus
C. A. Steward: The Sanger Centre, Wellcome Trust Genome Campus
J. E. Sulston: The Sanger Centre, Wellcome Trust Genome Campus
E. J. Tinsley: The Sanger Centre, Wellcome Trust Genome Campus
K. J. Turney: The Sanger Centre, Wellcome Trust Genome Campus
D. L. Willey: The Sanger Centre, Wellcome Trust Genome Campus
G. D. Wilson: The Sanger Centre, Wellcome Trust Genome Campus
A. A. McMurray: The Sanger Centre, Wellcome Trust Genome Campus
I. Dunham: The Sanger Centre, Wellcome Trust Genome Campus
J. Rogers: The Sanger Centre, Wellcome Trust Genome Campus
D. R. Bentley: The Sanger Centre, Wellcome Trust Genome Campus
Nature, 2000, vol. 407, issue 6803, 516-520
Abstract:
Abstract The human genome sequence will provide a reference for measuring DNA sequence variation in human populations. Sequence variants are responsible for the genetic component of individuality, including complex characteristics such as disease susceptibility and drug response. Most sequence variants are single nucleotide polymorphisms (SNPs), where two alternate bases occur at one position1,2,3. Comparison of any two genomes reveals around 1 SNP per kilobase1,3. A sufficiently dense map of SNPs would allow the detection of sequence variants responsible for particular characteristics on the basis that they are associated with a specific SNP allele4,5,6. Here we have evaluated large-scale sequencing approaches to obtaining SNPs, and have constructed a map of 2,730 SNPs on human chromosome 22. Most of the SNPs are within 25 kilobases of a transcribed exon, and are valuable for association studies. We have scaled up the process, detecting over 65,000 SNPs in the genome as part of The SNP Consortium programme, which is on target to build a map of 1 SNP every 5 kilobases that is integrated with the human genome sequence and that is freely available in the public domain.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/35035089 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:407:y:2000:i:6803:d:10.1038_35035089
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35035089
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().