EconPapers    
Economics at your fingertips  
 

An enantiomerically pure hydrogen-bonded assembly

Leonard J. Prins, Feike De Jong, Peter Timmerman and David N. Reinhoudt ()
Additional contact information
Leonard J. Prins: MESA+ Research Institute, University of Twente
Feike De Jong: MESA+ Research Institute, University of Twente
Peter Timmerman: MESA+ Research Institute, University of Twente
David N. Reinhoudt: MESA+ Research Institute, University of Twente

Nature, 2000, vol. 408, issue 6809, 181-184

Abstract: Abstract Chiral molecules have asymmetric arrangements of atoms, forming structures that are non-superposable mirror images of each other. Specific mirror images (‘enantiomers’) may be obtained either from enantiomerically pure precursor compounds, through enantioselective synthesis, or by resolution of so-called racemic mixtures of opposite enantiomers, provided that racemization (the spontaneous interconversion of enantiomers) is sufficiently slow. Non-covalent assemblies can similarly adopt chiral supramolecular structures1,2, and if they are held together by relatively strong interactions, such as metal coordination3, methods analogous to those used to obtain chiral molecules yield enantiomerically pure non-covalent products. But the resolution of assemblies formed through weak interactions, such as hydrogen-bonding, remains challenging, reflecting their lower stability and significantly higher susceptibility to racemization. Here we report the design of supramolecular structures from achiral calix[4]arene dimelamines and cyanurates, which form multiple cooperative hydrogen bonds that together provide sufficient stability to allow the isolation of enantiomerically pure assemblies. Our design strategy is based on a non-covalent ‘chiral memory’ concept4,5, whereby we first use chiral barbiturates to induce the supramolecular chirality in a hydrogen-bonded assembly6, and then substitute them by achiral cyanurates. The stability of the resultant chiral assemblies in benzene, a non-polar solvent not competing for hydrogen bonds, is manifested by a half-life to racemization of more than four days at room temperature.

Date: 2000
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/35041530 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:408:y:2000:i:6809:d:10.1038_35041530

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35041530

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:408:y:2000:i:6809:d:10.1038_35041530