EconPapers    
Economics at your fingertips  
 

Mean-field cluster model for the critical behaviour of ferromagnets

Ralph V. Chamberlin ()
Additional contact information
Ralph V. Chamberlin: Arizona State University

Nature, 2000, vol. 408, issue 6810, 337-339

Abstract: Abstract Two separate theories are often used to characterize the paramagnetic properties of ferromagnetic materials. At temperatures T well above the Curie temperature, TC (where the transition from paramagnetic to ferromagnetic behaviour occurs), classical mean-field theory1 yields the Curie–Weiss law for the magnetic susceptibility: χ( T) ∝ 1/(T - Θ), where Θ is the Weiss constant. Close to TC, however, the standard mean-field approach breaks down so that better agreement with experimental data is provided by critical scaling theory2,3: χ(T) ∝ 1/(T - TC)γ, where γ is a scaling exponent. But there is no known model capable of predicting the measured values of γ nor its variation among different substances4. Here I use a mean-field cluster model5 based on finite-size thermostatistics6,7 to extend the range of mean-field theory, thereby eliminating the need for a separate scaling regime. The mean-field approximation is justified by using a kinetic-energy term to maintain the microcanonical ensemble8. The model reproduces the Curie–Weiss law at high temperatures, but the classical Weiss transition at TC = Θ is suppressed by finite-size effects. Instead, the fraction of clusters with a specific amount of order diverges at T C, yielding a transition that is mathematically similar to Bose–Einstein condensation. At all temperatures above TC, the model matches the measured magnetic susceptibilities of crystalline EuO, Gd, Co and Ni, thus providing a unified picture for both the critical-scaling and Curie–Weiss regimes.

Date: 2000
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/35042534 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:408:y:2000:i:6810:d:10.1038_35042534

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35042534

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:408:y:2000:i:6810:d:10.1038_35042534